

Security Audit Report

X2Y2 Protocol

Feb 22, 2022

af://n9265
af://n9267
af://n9268
af://n9275

Type Description Level Status

Design & Implementation 4.3.1 Discussion of the
parameter rewardToken.

Info Fixed

Design & Implementation 4.3.2 Failure may occur
when a user calls the
withdraw() function to
claim unlocked X2Y2
tokens and rewards.

Low Fixed

Design & Implementation 4.3.3 The use of
treasuryWithdraw()
function may affect the
contract's normal
functionality.

Low Fixed

Design & Implementation 4.3.4 After multiple
auctions, the seller revokes
the auction resulting in a
loss of funds for the latest
bidder.

Info Discussed

Design & Implementation 4.3.5 When the auction fund
is ether, using the

Medium Fixed

1. Introduction

The X2Y2 Protocol is a decentralized NFT marketplace, which offers NFT trade
matching and NFT auction services. SECBIT Labs conducted an audit from
February 12th to February 22th, 2022, including an analysis of the smart
contracts in 3 areas: code bugs, logic flaws, and risk assessment. The assessment
shows that the X2Y2 Protocol contract has no critical security risks. The SECBIT
team has some tips on logical implementation, potential risks, and code
revising(see part 4 for details).

af://n9277

_transferTo() function
to refund the previous
bidder's auction fund may
cause a DOS attack.

Design & Implementation 4.3.6 Discussion of the
parameter dataMask.

Low Fixed

Design & Implementation 4.3.7 The parameter
itemHash in
_takePayment()
function is not used.

Info Discussed

Design & Implementation 4.3.8 Discussion on
permission design of partial
functions.

Info Discussed

Design & Implementation 4.3.9 Discussion on order
signature verification logic.

Info Discussed

Design & Implementation 4.3.10 A discussion of how
some of the parameters are
set.

Info Fixed

2. Contract Information

This part describes the basic contract information and code structure.

2.1 Basic Information

The basic information about the X2Y2 Protocol contract is shown below:

Project website

https://x2y2.io
Smart contracts for audit

ERC721Delegate - 0xf849de01b080adc3a814fabe1e2087475cf2e354
X2Y2_r1 - 0x6d7812d41a08bc2a910b562d8b56411964a4ed88
Presale - 0xc2f44bc508b6b50047a2f3afb1984ed105070be1
VestingContractWithFeeSharing -
0x6d11992a247ae0d726cb967a70fc981e8308b723

2.2 Contract List

The following content shows the contracts included in the X2Y2 protocol,
which the SECBIT team audits:

af://n9338
af://n9340
https://x2y2.io/
https://etherscan.io/address/0xf849de01b080adc3a814fabe1e2087475cf2e354#code
https://etherscan.io/address/0x6d7812d41a08bc2a910b562d8b56411964a4ed88#code
https://etherscan.io/address/0xc2f44bc508b6b50047a2f3afb1984ed105070be1#code
https://etherscan.io/address/0x6d11992a247ae0d726cb967a70fc981e8308b723#code
af://n9359

Name Lines Description

ERC721Delegate.sol 100 Processes the transfer of NFT
tokens to be traded.

X2Y2_r1.sol 508 A core contract provides NFT
token trade matching and NFT
token auction services.

AddressUpgradeable.sol 73 Collection of functions related to
the address type.

MarketConsts.sol 91 A library contract that defines the
data structure for NFT token
transactions.

Presale.sol 204 The X2Y2 token pre-sale contract.

ITokenStaked.sol 3 A library contract of token staking.

VestingContractWithFeeSharing.sol 83 A contract locks the X2Y2 token
and releases it in batches according
to the expected timeline.

3. Contract Analysis

This part describes code assessment details, including two items: "role
classification" and "functional analysis".

3.1 Role Classification

There are two key roles in X2Y2 Protocol: Governance Account and Common
Account.

Governance Account

af://n9394
af://n9396

Description

Contract administrator

Authority

Control the use of core contract functions
Transfer ownership
Update signers and delegates

Method of Authorization

The contract administrator is the contract's creator or authorized by
transferring the governance account.

Common Account

Description

Participate in NFT token transactions

Authority

Sell or buy NFT token
Launch or participate in an auction of NFT tokens

Method of Authorization

No authorization required

3.2 Functional Analysis

The X2Y2 protocol aims to build a decentralized NFT market and give it back to
the community. The SECBIT team conducted a detailed audit of some of the
contracts in the protocol. We can divide the critical functions of the contract
into several parts:

ERC721Delegate

This contract primarily handles the transfer of NFT tokens between buyers and
sellers. The NFT token for auction will be transferred from the seller to this
contract.

The main functions in ERC721Delegate are as below:

af://n9433
af://n9435

executeSell()

When the order type is COMPLETE_SELL_OFFER, the NFT will be
transferred directly from the seller to the buyer.

executeBuy()

When the order type is COMPLETE_BUY_OFFER, the NFT will be
transferred directly from the seller to the buyer.

executeBid()

When a buyer starts to bid on an NFT token auction, the NFT will be
transferred from the seller to this contract first.

executeAuctionComplete()

After successful bidding, the buyer will receive the NFT token.

executeAuctionRefund()

If the bid is not completed, the seller will get back the NFT token he
transferred in.

X2Y2_r1

This contract implements the core functions of the X2Y2 protocol: the NFT
token sale and the NFT token auction.

The main functions in X2Y2_r1 are as below:

cancel()

The signer can revoke the transaction before the NFT token has been
traded.

run()

This function implements the sale and auction of NFT tokens.

af://n9454

Presale

This contract is a pre-sale contract for the X2Y2 token. The X2Y2 token
purchased by the user will be released linearly.

The main functions in Presale are as below:

deposit()

Users can purchase a specified share of X2Y2 tokens at a specified price.
These X2Y2 tokens will not be transferred to the user directly but will be
released linearly after the pre-sale closes.

harvest()

Users claim reward tokens.

withdraw()

Users claim the reward tokens and the unlocked X2Y2 tokens.

4. Audit Detail

This part describes the process, and the detailed results of the audit also
demonstrate the problems and potential risks.

4.1 Audit Process

The audit strictly followed the audit specification of SECBIT Lab. We analyzed
the project from code bug, logical implementation, and potential risks. The
process consists of four steps:

Fully analysis of contract code line by line.
Evaluation of vulnerabilities and potential risks revealed in the contract
code.
Communication on assessment and confirmation.
Audit report writing.

af://n9464
af://n9477
af://n9479

Number Classification Result

1 Normal functioning of features defined by the contract ✓

2 No obvious bug (e.g., overflow, underflow) ✓

3 Pass Solidity compiler check with no potential error ✓

4 Pass common tools check with no obvious vulnerability ✓

5 No obvious gas-consuming operation ✓

6 Meet with ERC20 standard ✓

7 No risk in low-level call (call, delegatecall, callcode) and in-
line assembly

✓

8 No deprecated or outdated usage ✓

9 Explicit implementation, visibility, variable type, and
Solidity version number

✓

10 No redundant code ✓

11 No potential risk manipulated by timestamp and network
environment

✓

12 Explicit business logic ✓

4.2 Audit Result

After scanning with adelaide, sf-checker, and badmsg.sender (internal version)
developed by SECBIT Labs and open source tools including Mythril, Slither,
SmartCheck, and Securify, the auditing team performed a manual assessment.
The team inspected the contract line by line, and the result could be
categorized into the following types:

af://n9490

13 Implementation consistent with annotation and other info ✓

14 No hidden code about any logic that is not mentioned in
design

✓

15 No ambiguous logic ✓

16 No risk threatening the developing team ✓

17 No risk threatening exchanges, wallets, and DApps ✓

18 No risk threatening token holders ✓

19 No privilege on managing others' balances ✓

20 No non-essential minting method ✓

21 Correct managing hierarchy ✓

Risk Type Risk Level Impact Status

Design & Implementation Info Compatibility issue Fixed

4.3 Issues

4.3.1 Discussion of the parameter rewardTokenrewardToken.

Description

The user can purchase a specified share of X2Y2 tokens through a pre-sale. The
rewardToken parameter indicates the type of reward the user can receive for
holding the X2Y2 token. It is necessary to determine whether the
rewardToken is wrapped ether or any other coin. It may need to be
considered for token compatibility if it allows any token. In this case, the
safeTransfer() function will need to be used.

af://n9581
af://n9582
af://n9594

Risk Type Risk Level Impact Status

Design & Implementation Low Functional failure Fixed

Status

The team has adopted this suggestion, and used the safeTransfer()
function instead of the transfer() function.

4.3.2 Failure may occur when a user calls the withdraw()withdraw() function to
claim unlocked X2Y2 tokens and rewards.

Description

The _harvest() function will fail to be executed when there are not enough
rewards in the contract to pay the user. Further, the user will not call the
withdraw() function. It directly affects the withdrawal of the user's principal
(X2Y2 token).

//@audit located in Presale.sol
function _harvest(address user) internal returns (uint256) {
 (uint256 _pending, uint256 _debt) =
_pendingReward(user);

 if (_pending > 0) {
 totalRewardDistributed += _pending;
 userInfo[user].rewardDebt = _debt;

 //@audit It is recommended to use safeTransfer()
 // instead of the transfer() function.
 rewardToken.transfer(user, _pending);
 emit Harvest(user, _pending);
 }
 return _pending;
 }

af://n9597
af://n9599
af://n9611

Risk Type Risk Level Impact Status

Design & Implementation Low Design logic Fixed

Status

The team adds the emergencyWithdraw() function to prevent this situation.

4.3.3 The use of treasuryWithdraw()treasuryWithdraw() function may affect the
contract's normal functionality.

Description

//@audit located in Presale.sol
function withdraw() external nonReentrant {
 require(currentPhase == SalePhase.Staking, 'Withdraw:
Phase must be Staking');
 require(userInfo[msg.sender].hasShare, 'Withdraw: User
not eligible');

 uint256 pending = _pendingTokens(msg.sender);

 require(pending > 0, 'Withdraw: No pending token');

 //@audit maybe failed
 _harvest(msg.sender);

 userInfo[msg.sender].tokensClaimed += pending;
 x2y2Token.safeTransfer(msg.sender, pending);

 emit Withdraw(msg.sender, pending);
 }

af://n9614
af://n9616
af://n9628

Risk Type Risk Level Impact Status

Design & Implementation Info Design logic Discussed

The treasuryWithdraw() function is intended to withdraw rewards that do
not belong to any user, such as rewards that have been excluded due to
unstake. However, the implementation allows the administrator to withdraw
funds after the staking is over. In extreme cases, this may affect the withdrawal
of rewards by users. In addition, "rewards that do not belong to any user" may
be difficult to calculate. Suppose the calculation result is inaccurate (too large).
In that case, the last user to withdraw may not be able to collect the reward
properly.

Status

The team has postponed the time when administrators can take out rewards.
Users will have enough time to claim their rewards.

4.3.4 After multiple auctions, the seller revokes the auction resulting in a
loss of funds for the latest bidder.

// @audit located in Presale.sol
function treasuryWithdraw(uint256 amount) external onlyOwner
nonReentrant {
 require(block.number > stakingEndBlock, 'Owner:
staking have not ended yet');
 require(amount > 0, 'Owner: withdraw > 0');

 tokenRewardTreasuryWithdrawn += amount;
 rewardToken.safeTransfer(msg.sender, amount);
 emit TreasuryWithdraw(amount);
 }

af://n9631
af://n9633

Description

After the auction has started, the contract allows the seller to withdraw the
auction before the closing date. Then, the contract will return the most recent
bidder's bid funds. However, according to the current code logic, a portion of
the latest bidder's funds will be used as an incentive to compensate the
previous bidder. In this case, if the seller revoked the auction, it would directly
result in the latest bidder losing part of his bid.

// @audit located in X2Y2_r1.sol
function _run(
 Market.Order memory order,
 Market.SettleShared memory shared,
 Market.SettleDetail memory detail
) internal virtual returns (uint256) {
 uint256 nativeAmount = 0;

 Market.OrderItem memory item =
order.items[detail.itemIdx];
 bytes32 itemHash = _hashItem(order, item);

 } else if (
 detail.op == Market.Op.REFUND_AUCTION ||
 detail.op == Market.Op.REFUND_AUCTION_STUCK_ITEM
) {
 require(
 inventoryStatus[itemHash] ==
Market.InvStatus.AUCTION,
 'cannot cancel non-auction order'
);
 Market.OngoingAuction storage auc =
ongoingAuctions[itemHash];

 if (auc.netPrice > 0) {
 //@audit The netPrice will be sent to the
current bidder.
 _transferTo(order.currency, auc.bidder,
auc.netPrice);

af://n9645

Risk Type Risk Level Impact Status

Design & Implementation Medium DOS Fixed

Suggestion

This issue needs to be confirmed if it is within the design considerations.

Status

The developer team explains the issue. Cancellation of auctions is only allowed
in unusual cases to solve the problem of not being able to operate a specific
NFT. It is controlled by the backend program and authorized by signature.

4.3.5 When the auction fund is ether, using the _transferTo()_transferTo()
function to refund the previous bidder's auction fund may cause a DOS
attack.

 emit EvAuctionRefund(
 itemHash,
 address(order.currency),
 auc.bidder,
 auc.netPrice,
 0
);
 }
 _assertDelegation(order, detail);

 _emitInventory(itemHash, order, item, shared, detail);
 return nativeAmount;
 }

af://n9648
af://n9650
af://n9652

Description

The _transferTo() function processes the previous bidder's funds. It will
actively transfer the funds under this contract to the relevant bidder. The
normal logic would be as follows: the core contract would call the
sendValue() function to transfer the corresponding amount of ether to the
previous bidder. The sendValue() function calls the call() function
internally, which will determine the return value success. When success
== true, the transfer will succeed.

Consider the following scenario: a bidder participates in the auction using a
custom contract and maliciously overrides the fallback function to consume
gas (e.g., an infinite loop). When the next bidder joins the auction, the core
contract will use the _transferTo() function to initiate a transfer of the
previous bidder's funds and compensation back. The malicious gas-consuming
fallback function will be triggered. It could deplete the gas of the new bidder
and directly cause the bid to fail or increase the cost of the new bid, which
seriously affects the normal contract logic functionality.

//@audit located in X2Y2_r1.sol
function _run(
 Market.Order memory order,
 Market.SettleShared memory shared,
 Market.SettleDetail memory detail
) internal virtual returns (uint256) {
 uint256 nativeAmount = 0;

 Market.OrderItem memory item =
order.items[detail.itemIdx];
 bytes32 itemHash = _hashItem(order, item);

 } else if (detail.op == Market.Op.BID) {
 require(order.intent == Market.INTENT_AUCTION,
'intent != auction');

af://n9664

 if (!firstBid) {

 uint256 bidRefund = auc.netPrice;
 uint256 incentive = (detail.price *
detail.bidIncentivePct) / RATE_BASE;
 if (bidRefund + incentive > 0) {
 //@audit Send the previous bidder's funds
 // and compensation to current
bidder.
 _transferTo(order.currency, auc.bidder,
bidRefund + incentive);
 emit EvAuctionRefund(
 itemHash,
 address(order.currency),
 auc.bidder,
 bidRefund,
 incentive
);
 }

 }
 } else if (
 detail.op == Market.Op.REFUND_AUCTION ||
 detail.op == Market.Op.REFUND_AUCTION_STUCK_ITEM
) {
 if (auc.netPrice > 0) {
 //@audit Send the last bidder's bid funds
 // (minus incentives) to that bidder.
 _transferTo(order.currency, auc.bidder,
auc.netPrice);
 emit EvAuctionRefund(
 itemHash,
 address(order.currency),
 auc.bidder,
 auc.netPrice,
 0
);

 }

 _emitInventory(itemHash, order, item, shared, detail);
 return nativeAmount;
 }

function _transferTo(
 IERC20Upgradeable currency,
 address to,
 uint256 amount
) internal virtual {
 if (amount > 0) {
 //@audit Using the following function
 // when the funds are ether.
 if (_isNative(currency)) {
 AddressUpgradeable.sendValue(payable(to),
amount);
 } else {

 }
 }
 }

//@audit located in AddressUpgradeable.sol
function sendValue(address payable recipient, uint256 amount)
internal {
 require(address(this).balance >= amount, "Address:
insufficient balance");

 (bool success,) = recipient.call{value: amount}("");
 require(success, "Address: unable to send value,
recipient may have reverted");
 }

Risk Type Risk Level Impact Status

Design & Implementation Low Data manipulation Fixed

Suggestion

One strategy is to ignore the boolean value success judgment and cap the gas
to prevent consuming all available gas. An example is as follows:

Status

The backend checks whether the auction user is an EOA address. Only EOA
addresses are allowed to join the auction currently. In the new version, the
team has modified the _transferTo() function to impose a gas consumption
limit on the call() function and ignore the return value.

4.3.6 Discussion of the parameter dataMaskdataMask.

Description

The dataMask variable in the Order struct can be set to a special value by the
order initiator to enable the replacement of subsequent trade targets.
Presumably, it is used for an NFT buyer to make a buy offer to a specified NFT
collection and buy anyone in that collection at a fixed price.

function sendValue(address payable recipient, uint256 amount)
internal {
 require(address(this).balance >= amount, "Address:
insufficient balance");

 (bool success,) = recipient.call{value: amount,gas:
40000}("");

 //require(success, "Address: unable to send value,
recipient may have reverted");
 }

af://n9668
af://n9671
af://n9673
af://n9685

However, the contract code does not constrain the parameter dataMask scope
of use. Using it in non-COMPLETE_BUY_OFFER scenarios introduces potential
risks.

For example, if an NFT seller uses this feature, it corresponds to the
COMPLETE_SELL_OFFER branch in the code. When sellers hold multiple NFT
tokens of the same collection, they usually use the setApprovalForAll()
function to authorize all NFT tokens they hold for trading. With the seller's
permission, the current code allows the buyer to modify the data variable,
leading to some unintended NFT tokens being sold.

A more specific example is as follows. Suppose the seller holds five NFT tokens
of the same collection with token ids 1, 2, and 3. The seller only wants to sell
the NFT tokens with1 and 2 token ids. The seller calls the
setApprovalForAll() function. All three NFT tokens held by the seller are
authorized at once for gas saving. In this case, a buyer can change the data
parameter to replace the tokenID 1 or 2 with 3. It creates an unexpected
situation where an unintended NFT token is sold. In extreme cases, both the
NFT type and token ids can be replaced.

//@audit link：https://github.com/OpenZeppelin/openzeppelin-
contracts/blob/master/contracts/token/ERC721/ERC721.sol#L136
function setApprovalForAll(address operator, bool approved)
public virtual override {
 _setApprovalForAll(_msgSender(), operator, approved);
}

function _run(
 Market.Order memory order,
 Market.SettleShared memory shared,
 Market.SettleDetail memory detail
) internal virtual returns (uint256) {
 uint256 nativeAmount = 0;

 Market.OrderItem memory item =
order.items[detail.itemIdx];
 bytes32 itemHash = _hashItem(order, item);

The parameters require a final signature by the X2Y2 backend, so it relies on
the backend to check these core parameters. The above issue would only occur
in the extreme case of a user signing an order blindly, leading to abuse of the
dataMask function while the backend failed to verify due to failure of the
check logic or a signer private key leak.

Suggestion

Confirm the scope of dataMask usage and check the backend verification
logic. The possibility of signer private key leakage is not as low as one might
think. So we recommend refining the contract validation logic to ensure that
user assets remain secure in extreme cases.

Status

The team has adopted our suggestion. In the new version, the dataMask
feature is only allowed when performing the COMPLETE_BUY_OFFER
operation, eliminating the previously mentioned risk in extreme cases.

 bytes memory data = item.data;
 {
 //@audit modifying data data with the permission
of the seller
 if (order.dataMask.length > 0 &&
detail.dataReplacement.length > 0) {
 _arrayReplace(data, detail.dataReplacement,
order.dataMask);
 }
 }

 }

af://n9693
af://n9695

Risk Type Risk Level Impact Status

Design & Implementation Info Redundant variable Discussed

4.3.7 The parameter itemHashitemHash in _takePayment()_takePayment() function is not
used.

Description

The itemHash argument in the _takePayment() function is not yet used.

Suggestion

We recommend checking that the design matches the implementation.

//@audit located in X2Y2_r1.sol
function _takePayment(
 bytes32 itemHash, // @audit never used?
 IERC20Upgradeable currency,
 address from,
 uint256 amount
) internal virtual returns (uint256) {
 if (amount > 0) {
 if (_isNative(currency)) {
 return amount;
 } else {
 currency.safeTransferFrom(from, address(this),
amount);
 }
 }
 return 0;
 }

af://n9697
af://n9709
af://n9712

Risk Type Risk Level Impact Status

Design & Implementation Info Permission issue Discussed

Status

The itemHash variable was initially being used in an event. Currently, it is a
redundant variable here, which is harmless.

4.3.8 Discussion on permission design of partial functions.

Description

The current implementation does not check if the order initiator is the
transaction initiator for canceling orders and auctions. It only checks the
backend's signature. It means that anyone with a legitimate signature can
initiate a cancellation transaction.

//@audit located in X2Y2_r1.sol
// @audit anyone get the sig from signers could call this
function cancel(
 bytes32[] memory itemHashes,
 uint256 deadline,
 uint8 v,
 bytes32 r,
 bytes32 s
) public virtual nonReentrant whenNotPaused {}

 function _run(
 Market.Order memory order,
 Market.SettleShared memory shared,
 Market.SettleDetail memory detail
) internal virtual returns (uint256) {
 ...
 else if (detail.op == Market.Op.CANCEL_OFFER) {
 } else if (
 detail.op == Market.Op.REFUND_AUCTION

af://n9714
af://n9716
af://n9728

Risk Type Risk Level Impact Status

Design & Implementation Info Design logic Discussed

Suggestion

It needs to be confirmed whether this issue is within the design considerations.
If there is no specific need, we recommend adding strict checks to the contract
to avoid potential risks (e.g., signatures exposed early in the memory pool,
signer private key leakage, centralization risks).

Status

The cancel() function is designed to be executed by anyone who gets the
signature. And the run() function checks the order initiator in the backend.
The team chose to check these parameters on the backend to save gas.

4.3.9 Discussion on order signature verification logic.

Description

The current implementation does not include the core contract address for
calculating the orderHash.

) {
 }
 }

//@audit located in X2Y2_r1.sol
function _verifyOrderSignature(Market.Order memory order)
internal view virtual {
 address orderSigner;

 if (order.signVersion == Market.SIGN_V1) {
 bytes32 orderHash = keccak256(
 abi.encode(
 order.salt,

af://n9731
af://n9733
af://n9735
af://n9747

Risk Type Risk Level Impact Status

Design & Implementation Info Design logic Fixed

Suggestion

The main contract is currently deployed in an upgradeable pattern, so a new
version in the future will not change the contract address. Therefore the risk of
signature replay is very low. If the contract address needs to be changed in the
future, the way orderHash is calculated will have to be changed.

Status

This risk has been discussed with the team. A new version of the signature
method will be used in the future upgrade and will not introduce the above
risk.

4.3.10 A discussion of the way some of the parameters are set.

 order.user,
 order.network, // @audit-ok prevent replay
 order.intent,
 order.delegateType,
 order.deadline,
 order.currency,
 order.dataMask,
 order.items.length,
 order.items
)
);
 ...
 }
 }

af://n9750
af://n9752
af://n9754

Description

Important parameters in SettleDetail including bidIncentivePct,
aucMinIncrementPct, aucIncDurationSecs, and fees are passed in by
the user and signed by the backend before being passed to the smart contract
for validation. The checks on the contract for these parameters are weak.

Suggestion

Consider the single-point risk of the current design and strengthen backend
logic checks and private key protection.

Status

This issue has been discussed. The team has taken our suggestion and added
checks for the variables bidIncentivePct, aucMinIncrementPct, and
aucIncDurationSecs in the new version.

//@audit located in MarketConsts.sol
struct SettleDetail {
 Market.Op op;
 uint256 orderIdx;
 uint256 itemIdx;
 uint256 price;
 bytes32 itemHash;
 IDelegate executionDelegate;
 bytes dataReplacement;
 uint256 bidIncentivePct;
 uint256 aucMinIncrementPct;
 uint256 aucIncDurationSecs;
 Fee[] fees;
 }

af://n9766
af://n9769
af://n9771

Risk Type Risk Level Impact Status

Design & Implementation Info Design logic Discussed

4.4 Risks

4.4.1 Discussion on the potential risk of introducing an off-chain
signersigner role

Description

The X2Y2 core contract takes a novel hybrid design and implementation
approach. The core business logic is verified and executed by the smart
contract. Besides, additional validation work and parameter settings are moved
off-chain. The validation is performed by the backend and signed and
authorized on the server by a pre-defined signer role. This design can
effectively simplify smart contract logic, reduce gas consumption, and flexibly
adjust parameters and validation logic. It can even improve the difficulty of
phishing attacks on users. Considering that this introduces a new off-chain role
called signer, whose private key is stored on the server, it is necessary to
think well in advance what risks the protocol will suffer in the extreme case of
signer private key leakage. The risks that may be caused by private key leakage
have been mentioned in related issues in the previous sections.

Status

This risk has been discussed with the team. The risk has been significantly
reduced in the improved version of the code. The most severe consequences
now are only the tampering of the fee recipients and the fee ratio, which is
actually less impactful and easily detectable. The team will further restrict the
privileges of a single signer in a future major release.

af://n9774
af://n9775
af://n9787
af://n9789

5. Conclusion

After auditing and analyzing the X2Y2 protocol contract, SECBIT Labs found
some issues to optimize and proposed corresponding suggestions, which have
been shown above. SECBIT Labs holds the view that the X2Y2 protocol has good
code quality and concise implementation.

af://n9791

Disclaimer

SECBIT smart contract audit service assesses the contract's correctness,
security, and performability in code quality, logic design, and potential risks.
The report is provided "as is", without any warranties about the code
practicability, business model, management system's applicability, and
anything related to the contract adaptation. This audit report is not to be taken
as an endorsement of the platform, team, company, or investment.

af://n9794

Level Description

High Severely damage the contract's integrity and allow attackers to steal
ethers and tokens, or lock ethers inside the contract.

Medium Damage contract's security under given conditions and cause
impairment of benefit for stakeholders.

Low Cause no actual impairment to contract.

Info Relevant to practice or rationality of the smart contract, could possibly
bring risks.

APPENDIX

Vulnerability/Risk Level Classification

af://n9797
af://n9798

SECBIT Lab is devoted to constructing a common-consensus, reliable,
and ordered blockchain economic entity.

https://secbit.io

audit@secbit.io

@secbit_io

af://n9817
af://n9821
https://secbit.io/
mailto:audit@secbit.io
https://twitter.com/secbit_io

